郭光灿

  • 中国科大首次实现基于里德堡原子临界增强的高灵敏微波传感

    中国科大郭光灿院士团队在基于相变的精密测量上取得新进展。该团队史保森、丁冬生课题组与丹麦奥尔胡斯大学的Klaus Mølmer教授和英国杜伦大学的Charles S. Adams教授合作,利用强关联系统的相变提高了里德堡原子对微波电场测量的精度和灵敏度,相关成果以“Enhanced metrology at the critical point of a many-body Rydberg atomic system”为题发表在国际知名学术期刊《Nature Physics》上。发展现代化先进量子测量体系具有重要的研究意义,它既是国家重大需求,又符合国际化发展潮流。由于里德堡原子具有较大的电偶极矩,可以对微弱的电场产生很强的响应,因此已经成为一个非常有前景的微波测量的量子体系。另一方面,由于里德堡原子之间具有长程强相互作用,常被用于模拟研究强关联系统以及相变。强关联系统在临界点附近对外界扰动更加敏感,可以被应用于量子精密测量领域。虽然有大量理论报道利用强关联系统的临界状态去做量子传感,从理论被提出来十几年后,但在实验上一直未能成功实现。主要原因是:多体系统相变过程难制备、临界点

    研究进展 2022年10月18日
  • 中国科大验证真多体非局域性,证实用少体非局域关联无法解释自然界中所有关联

    中国科大郭光灿院士团队在量子力学基础研究方面取得重要进展。该团队李传锋、黄运锋等人与西班牙理论物理学家合作,实验验证了基于局域操作和共享随机性(LOSR, Local operation and shared randomness)理论框架下的真多体非局域性,结果表明用两体或三体非局域关联无法解释自然界产生的所有关联。该成果10月4日发表在国际知名期刊《物理评论快报》上,并被选为该期的封面文章。量子力学允许粒子之间存在非局域的关联,即量子非局域性。量子非局域性是实现各种量子信息过程的重要资源。对于多体系统,真多体非局域性被认为是多体系统中能展现的最强的非局域关联。真多体非局域性检验通常依赖于局域操作和经典通信(LOCC, Local operation and classical communication)框架下的不等式的违背。然而在多体非局域性的检验中,我们通常需要假定不同观测者间联合测量的概率分布服从无信号条件(non-signaling condition),经典通信是禁止的,因此基于LOCC的真多体非局域性并不是良好的定义。在量子资源理论中,LOCC并不是唯一可以

    研究进展 2022年10月9日
  • 中国科大在二维材料固态自旋色心研究中取得新进展

    中国科大郭光灿院士团队在二维范德瓦尔斯材料固态自旋色心领域取得重要进展。该团队李传锋、唐建顺研究组与匈牙利魏格纳物理研究中心AdamGali教授等人合作,实验研究并理论解释了六方氮化硼(hexagonalboronnitride,hBN)中带负电硼空位(VB-)色心受磁场调制的自旋相干动力学行为,揭示了hBN中VB-色心电子自旋与核自旋之间的相干耦合和弛豫机制,对发展基于二维范德瓦尔斯材料的相干自旋系统及低维量子器件具有重要意义。该成果9月29日发表在国际知名期刊《Nature Communications》上。近年来的研究发现宽禁带范德瓦尔斯材料hBN是室温自旋色心的优秀宿主,由于范德瓦尔斯材料通过简单的机械剥离就能制备为原子厚度的二维结构,且能和多种微纳结构相耦合,在低维量子器件制备和近场传感探测等方面比三维体材料具有天然优势,因此hBN中的自旋色心成为固态自旋色心领域的研究热点。目前研究最广泛的hBN自旋色心为VB-色心,且研究主要集中于VB-的电子自旋,对VB-电子自旋周围的核自旋尚缺乏深入研究及观测。由于色心周围的核自旋是固态自旋维度扩展的主要途径之一,另外也是造

    研究进展 2022年10月3日
  • 中国科大提出并实现误差容忍高安全量子密钥分发

    中国科大郭光灿院士领导的中国科学院量子信息重点实验室在高安全量子密钥分发的实用化研究方面取得重要进展。该实验室的韩正甫教授及其合作者银振强、王双、陈巍等提出了兼具高稳定性和高安全性的误差容忍测量设备无关量子密钥分发协议,并从安全性分析和实验验证两方面证实了该协议对源端非理想特性具有极强的容忍能力,有力地推动了新一代量子密钥分发技术的实用化进程。相关研究成果于8月3日在线发表在国际学术知名期刊《Optica》上[Optica9,886-893 (2022)]。信息安全是当今时代的重要主题,量子密钥分发技术以量子物理原理为基础,可实现理论上无条件安全的密钥分发。然而,这种理论安全性需要两个重要的假设,即用户拥有符合理论模型描述的理想设备,以及窃听者不能侵入系统的探测端和源端。测量设备无关量子密钥分发可以免疫所有针对探测端的潜在攻击行为,是新一代量子密钥分发技术的典型协议。然而,其依然保留了对源端的诸多安全性假设,例如量子态调制中的误差和噪声就会违背这些安全性假设,不仅会显著降低量子密钥分发系统的性能,还会给潜在窃听者带去可趁之机。在复杂的实际环境中,用户不得不耗费大量的资源以监控和

    研究进展 2022年8月17日
  • 中国科大实现两个光力系统的全光远程同步

    中国科大郭光灿院士团队在光力系统的全光远程同步研究中取得重要进展。该团队董春华教授及其合作者邹长铃等将微腔内的光辐射压力引起的机械振荡加载到泵浦光上,经过5km长的单模光纤传输后激发另一微腔内的机械振荡,通过光学模式和机械模式的有效调控从而实现了两个光力系统的全光远程同步。相关研究成果8月5日发表在Physics Review Letters上,选为“PRL Editors Suggestion”迄今为止,振荡器之间的全光同步距离仅限制在微米量级,这大大限制了同步网络的应用。尽管光力系统将机械振荡器与光子连接起来具有天然优势,但远程光力系统的全光同步实验实现仍然具有挑战性。首先,由于光学模式和机械模式在微腔制备过程和操控中不可避免的涨落,在不同的微腔系统中很难同时实现完全相同的光学和机械模式;其次,在传输过程中,机械振荡的振幅会衰减,必然会产生光损耗,从而限制了同步的距离。研究团队提出了一种新的光力系统全光同步的物理解释,将注入锁定机制与同步机制结合起来,实现了全光远程同步。首先,基于微腔中的热光效应和光弹效应,研究团队实现了最大达5.5nm的光学频移以及0.42MHz的机

    研究进展 2022年8月9日
  • 中国科大实现无探测漏洞的高维贝尔不等式检验

    中国科大郭光灿院士团队在量子非局域性研究中取得重要进展,该团队李传锋、柳必恒研究组将高维纠缠光子的总体探测效率提升到71.7%,从而实现了无探测漏洞的高维贝尔不等式检验。该成果8月3日发表在国际知名期刊《物理评论快报》上。非局域性是量子力学和量子信息科学的重要基础。随着贝尔不等式的提出,人们可以在实验上检验量子非局域性。由于实验装置的不完美,绝大多数实验都存在漏洞,其中广受关注的漏洞包括探测漏洞和局域性漏洞等。2015年,科学家们首次在二维纠缠体系中同时关闭了探测漏洞和局域性漏洞,并以此为基础发展出了各种设备无关的量子信息任务。相比二维量子纠缠而言,高维量子纠缠在信道容量、安全性及抗噪能力上都具有明显优势,因此实现无漏洞的高维贝尔不等式检验并以此为基础实现设备无关的高维量子信息任务是目前量子信息领域亟需发展的重要方向。近年来李传锋、柳必恒研究组致力于高维量子网络的实验研究,并已取得一系列进展,解决了高维量子纠缠的制备、传输、测量等困难,为实现高维量子网络打下坚实的基础。在本实验中,研究组在高维纠缠光子的探测效率方面取得突破,实现了无探测漏洞的高维贝尔不等式检验。研究组采

    研究进展 2022年8月6日
  • 中国科大提出并实现新型量子随机数发生器

    中国科大郭光灿院士团队在量子随机数研究领域取得重要原创性进展。该团队韩正甫教授及其合作者王双、银振强、陈巍等提出了一种新型的半设备无关量子随机数发生器协议并进行了实验验证。该协议即使在光源不可信条件下,也无需对探测设备进行表征,使用日常光源即可快速生成安全的量子随机数。该协议全面地提升了量子随机数发生器的安全性与实用性,为半设备无关量子随机数发生器的实用化奠定了坚实基础。相关研究成果于7月28日以“Certified Randomness from Untrusted Sources and Uncharacterized Measurements”为题在线发表于著名国际学术期刊《Physical Review Letters》上。图1 新型半设备无关量子随机数发生器结构示意图随机数是信息时代的一种重要基础资源。量子随机数发生器基于量子物理原理产生具有内禀随机性的真随机数,为科学仿真、密码学等领域提供了极大的助力。在目前受到广泛关注的量子保密通信中,量子随机数发生器更是其中的关键环节。然而,现实中的量子随机数发生器可能具有的非理想性会破坏随机数的不可预测性和私密性。虽然完全设备

    研究进展 2022年7月30日
  • 中国科大实现低频射频场的高灵敏里德堡原子传感器

    中国科大郭光灿院士团队在基于里德堡原子的低频射频电场测量上取得重要进展。该团队史保森、丁冬生课题组利用非共振外差方法实现了基于里德堡原子的低频射频电场精密探测,相关成果以“Highly sensitive measurement of a MHz RF electric field with a Rydberg atom sensor”为题发表在国际应用物理期刊《Physical Review Applied》上。里德堡原子由于其较大的电偶极矩和极化率等独特性质,在微波测量领域展现出巨大应用潜力。基于里德堡原子的量子传感器在测量精度﹑抗干扰性以及可朔源等方面有望超越传统微波接收系统,因此该研究方向受到广泛关注,例如:美国陆军研究室、桑迪亚国家实验室等开展了相关研究,并取得了重要进展[Physical Review Applied 13, 054034 (2020),Physical Review Applied 15, 014047 (2021)]。尽管里德堡原子传感器在GHz高频微波频段探测取得了重要进展,但在MHz附近的低频波段却遇到困难,测量灵敏度较低,其主要原因在于低频

    研究进展 2022年7月21日
  • 中国科大在高安全量子密钥分发网络方面取得新进展

    中国科大郭光灿院士团队在量子密钥分发网络化研究方面取得重要进展。该团队韩正甫教授及其合作者王双、银振强、陈巍等实现了抗环境干扰的非可信节点量子密钥分发网络,全面提高了量子密钥分发网络的安全性、可用性和可靠性,向实现下一代量子网络迈出了重要的一步。相关研究成果于7月16日在线发表在国际学术知名期刊《Optica》上[Optica, 9, 812-823(2022)]。网络安全是信息时代的重要主题,量子密钥分发网络以量子物理原理为基础,可为成千上万的用户提供信息论安全的保密通信服务,构建安全可控的网络环境。当前,量子保密通信网络已在全球各地先后部署,在实践中证明了其优越的安全通信能力。但网络中对于可信节点的需求提高了其实际部署的门槛,如何免除用户链路上必须可信的中间节点,降低对通信链路的安全性要求,从而构建下一代基于非可信节点的量子网络,是目前急需解决的问题。测量设备无关量子密钥分发协议(MDI-QKD)通过设置一个非可信节点对编码量子态进行联合测量,可在两个用户间构建安全的通信链路,是构建百公里级城域量子网络的重要角色。然而联合测量不仅限定了参与用户的数量,还对信道环境的稳定

    研究进展 2022年7月19日
  • 中国科大实现里德堡原子微波频率梳谱仪

    中国科大郭光灿院士团队在基于里德堡原子的无线传感上取得新进展。该团队史保森、丁冬生课题组实现了一种基于里德堡原子的微波频率梳谱仪,在宽带微波的探测领域具有应用前景,相关成果7月14日以“Rydberg microwave frequency comb spectrometer”为题发表在美国物理协会(APS)旗下的应用物理期刊Physical Review Applied上。微波测量在通信、导航、雷达、以及天文探测领域发挥重要作用。里德堡原子具有较大的电偶极矩,它可以对微弱的电场具有很强的响应,因此可以用里德堡原子作为微波传感器。近年来,该研究方向受到广泛关注,例如:美国陆军研究室David H. Meyer等人展示了一个基于热里德堡原子与平面微波波导耦合的原子射频接收器和频谱分析仪[Physical Review Applied 15, 014047 (2021)]。尽管里德堡原子传感研究取得了重要进展,但仍然存在一些亟待解决的问题,比如可实时接收信号的带宽(瞬时带宽)受限于原子系统到达稳态的弛豫时间,通常只有几MHz,严重影响了该体系的实用化进程。在本工作中,研究团队基

    研究进展 2022年7月18日