soujer

  • 中国科大在范德瓦尔斯结中观察到约瑟夫森隧穿的奇异长程趋肤效应

    近日,中国科大向斌教授团队和中山大学王志副教授团队合作,通过构建范德瓦尔斯铁磁金属Fe3GeTe2(F)桥接两个单重态超导体NbSe2(S),在该平面约瑟夫森结(S/F/S)器件中首次观察到长程超导电流,并且发现该长程超导电流呈现奇异的趋肤效应。该成果以“Long-range skin Josephson supercurrent across a van der Waals ferromagnet”为题于2023年3月30日以Article形式在线发表在《Nature Communications》上。铁磁性和超导性是两个相互抑制的宏观有序物性,以至于当单重态超导电流进入铁磁体会引发库伯对迅速退相干。但是近年来,人们在理论和实验上发现在超导体/铁磁体界面近邻诱导出的自旋三重态超导电流能够在铁磁体中无耗散输运很长距离,因此在新型无耗散量子器件的构建上更可取。早期实验工作集中在构建耦合体为体相铁磁体的超导约瑟夫森结,实现对自旋三重态电流的观察以及自旋和电荷自由度的控制,但是基于二维范德瓦尔斯材料的异质结观察自旋三重态超导电流以及相关的界面性质研究却鲜有报道。针对以上问题,研究

    研究进展 2023年4月4日
  • 欧盟启动PASQuanS2项目,开发能够处理多达10000个原子的量子模拟器

    4月3日,欧洲量子旗舰计划启动了新项目“PASQuanS2”(大规模可编程原子量子模拟器),旨在开发一个能够处理多达10000个中性原子的量子模拟器,在未来七年内进一步改变欧洲可编程量子模拟发展格局。根据欧盟“地平线计划”,欧盟会在未来3.5年内为PASQuans2提供1660万欧元的资金。PASQuans2项目是欧洲量子旗舰计划之前的“PASQuanS”项目(2018-2022)的延续。PASQuanS是一项旨在量子模拟技术和应用领域做出重大贡献的研究工作。该项目将实验小组、理论团队和工业合作伙伴联系起来,扩大了基于原子和离子的量子模拟平台,使其成为迄今为止最先进的量子模拟平台。最初由PASQuanS开始的任务现在由后续项目PASQuanS2继续和扩展。PASQuans2项目由德国马克斯普朗克量子光学研究所牵头,联合了来自奥地利、法国、德国、意大利、斯洛文尼亚和西班牙的25个学术和技术合作伙伴,与研究机构、工业、中小型企业和初创企业以及国际领先专家们组成了一个合作框架伙伴关系,并提出了一个雄心勃勃的七年研究计划:该团队将推进量子模拟相关科学和工业问题的硬件和软件,开发能够

    前沿动态 2023年4月3日
  • 基于原子系综的量子光源及其应用

    基于原子系综的量子光源及其应用

    学术报告 2023年3月31日
  • 加拿大国防部和武装部队发布量子科技战略计划《Quantum 2030》

    3月27日,加拿大国防部和武装部队(DND / CAF)发布量子科技战略实施计划《Quantum 2030》,该计划是项七年行动计划,旨在确保DND / CAF为开发量子技术在国防和安全方面的颠覆性潜力做好准备。该计划认为,量子技术的潜在军事应用包括:全球定位系统(GPS)无法正常运行时的定位、导航和计时,用于检测化学、生物、放射性和核威胁的传感器,安全通信和密码破译,以及先进材料和医学研究等。对这些量子技术的研究和开发将确保DND / CAF成为量子技术的早期应用者,并保持与盟友合作,持续领先于潜在对手。该战略计划包括了DND/CAF的五项行动呼吁:1.明确在DND / CAF中的量子技术使用者;2.培训工作人员有关量子技术的基本理解与科学素养;3.协调DND/CAF对量子技术领域的投资;4.通过创新计划获得最先进的技术;5.鼓励支持工业界和学术界积极参与。《Quantum 2030》确定了四种有前景的量子技术:量子增强雷达、量子增强型光探测和测距(LiDAR)、用于国防和安全的量子算法、量子网络,并针对这四种量子技术制定了一项包括人才培养、科学开发、

    前沿动态 2023年3月27日
  • 中国科大首次实现基于碳化硅中硅空位色心的高压原位磁探测

    中国科大郭光灿院士团队在碳化硅色心高压量子精密测量研究中取得重要进展。该团队李传锋、许金时、王俊峰等人与中科院合肥物质科学研究院固体所高压团队刘晓迪研究员等合作,在国际上首次实现了基于碳化硅中硅空位色心的高压原位磁探测,该技术在高压量子精密测量领域具有重要意义。3月23日研究成果以“Magnetic detection under high pressures using designed silicon vacancy centres in silicon carbide” 为题在线发表在国际知名期刊《自然·材料》上。高压技术已经广泛应用于物理学、材料科学、地球物理和化学等领域。特别是压力下高临界温度超导体的实现,引起了学术界的极大关注。然而一直以来,原位高分辨率的磁测量是高压科学研究的难题,并制约着高压超导抗磁行为和磁性相变行为的研究。传统的高压磁测量手段,如超导量子干涉仪难以实现金刚石对顶砧中微米级样品的弱磁信号的高分辨率原位探测。为了解决这一关键核心难题,金刚石NV色心的光探测磁共振技术已被用于原位压力诱导磁性相变检测。然而,由于NV色心具有四个轴向,并且其电子自旋的零

    研究进展 2023年3月27日
  • 超导单光子探测器为高速量子通信带来新突破

    3月9日和13日,由瑞士和中国分别完成的高速量子通信成果先后在线发表在《自然·光子学》(Nature Photonics)杂志上[1, 2]。两项工作的共同特点是都利用了高速的多像素超导条带光子探测器(学术界通常称其为超导纳米线单光子探测器,SNSPD)。而在此前的1月26日,美国喷气推进实验室(JPL)报道了高精度高计数率的多像素新型超导纳米线单光子探测器,发表在《光学》(Optica)杂志上[3]。这些进展表明,超导单光子探测器正在为高速量子通信带来新的突破。瑞士日内瓦大学Hugo Zbinden团队与ID Quantique公司合作,将14根超导纳米线并行,形成光敏面约15微米的SNSPD,该探测器速度比单线条SNSPD计数率快了20倍。利用该高速SNSPD,团队在10公里的光纤上实现了64Mbps(bits per second,每秒比特率)的实时量子密钥成码率。中国科学技术大学潘建伟、徐飞虎等与上海微系统所尤立星等合作,利用8根并行纳米线形成的光敏面约15微米的SNSPD,实现了每秒输入5.5亿个光子的情况下仍能保持62%的探测效率。在此基础上,研究团队在10公里的光

    前沿动态 2023年3月25日
  • 我国科学家在量子纠错领域取得突破性实验进展

    近日,在俞大鹏院士的带领下,依托南方科技大学建设的深圳十大基础研究机构-深圳量子科学与工程研究院、深圳国际量子研究院助理研究员徐源等联合福州大学郑仕标教授、清华大学孙麓岩教授等团队,在基于超导量子线路系统的量子纠错领域取得突破性实验进展。联合研究团队通过实时重复的量子纠错技术延长了量子信息的存储时间,在国际上首次超越盈亏平衡点,展示了量子纠错优势。这一里程碑式的突破代表了迈向实用化可扩展通用量子计算的关键一步,相关研究成果以“Beating the break-even point with a discrete-variable-encoded logical qubit”为题于3月23日在线发表在《自然》杂志上 [Nature (2023)]。虽然基于超导量子线路系统的量子信息处理领域研究近些年发展迅猛,但由于量子计算机体系的错误率远高于经典数字计算机,想要构建具有实用价值的通用量子计算机,量子纠错依然不可或缺,因为量子纠错可以有效地保护量子信息避免受到环境中噪声的干扰。传统的量子纠错方案编码一个逻辑量子比特需要多个冗余的物理比特,不但需要巨大的硬件资源的开销,发生错误的通

    前沿动态 2023年3月23日
  • 实现光晶格高布洛赫能带中Feshbach分子的成像

    近期,来自德国汉堡大学的科学家成功地对光晶格中高布洛赫能带超冷Feshbach分子的奇异二聚体进行了成像,有望为新形式超流的研究提供帮助。该成果于3月20日发表在《自然·物理学》杂志上。玻色-爱因斯坦凝聚(BEC)与巴丁-库珀-施里弗(BCS)超流是成对费米子系统基态的两个极限。量子气体系统为这两个极限之间的过渡行为(BEC-BCS交叉)提供了一个独特的实验平台。迄今为止,对这一过渡行为的研究往往集中在基于近谐波的光学势阱系统,而对光晶格中的BEC-BCS交叉行为的研究不仅稀少,而且往往受限于仅涉及局部s轨道的最低布洛赫带。来自汉堡大学的Yann Kiefer、Max Hachmann和Andreas Hemmeri在光晶格的第二个布洛赫带中制备出了基于费米子原子的超冷Feshbach分子。Feshbach分子是处于解离极限以下的最后束缚态中的原子对。借助于Feshbach共振,它们可以通过快速绝热地改变散射长度来形成。为了区分Feshbach分子和光学晶格第二布洛赫带中的未配对原子,三位学者使用了一种与质谱技术类似的简单成像方法,能够精确地测量Feshbach分子的寿命和

    前沿动态 2023年3月22日
  • 激光冷却原子使量子计算网络离现实更近一步

    超导处理器中的量子信息存储为低能量微波光子,但如果要在长距离上传输这些信息以构建量子信息处理网络,则需要将低能量光子转换为更高能量的可以在光纤中传输的光子。美国芝加哥大学与斯坦福大学组成的联合研究团队在低温(5K)环境下,将85Rb冷原子系综同时与三维超导谐振器和振动抑制光腔耦合,展示了利用激光冷却的铷原子实现低能量和高能量光子之间的转换。该转换器若与超导量子比特相结合,将构成一个完整的量子网络平台。该成果于3月22日发表在《自然》杂志上。量子比特(Qubits)是量子信息的基本单位。它们被编码在物理系统中,如光子、原子和离子的量子态。在超导量子计算平台中,量子比特经常被编码在具有低能量、厘米级波长的微波光子上。尽管这些量子比特可被局域地操纵,但在室温下难以进行远距离信息传输。这是由于,室温环境的热辐射中存在着丰富的低能量光子,导致携带量子信息的光子无法与热背景噪声光子区分出来。而波长在可见光和近红外范围内的光子则没有这样的问题,因为它们具有更高的能量,可在光纤中携带信息进行长距离传输,且信息损耗最低。在低能量和高能量的光子之间转换量子信息便是建立量子计算网络的关键。利用缀

    前沿动态 2023年3月22日
  • 科学家在单量子点中观测到光子束缚态

    由澳大利亚悉尼大学和瑞士巴塞尔大学联合主导的研究团队首次演示了对具有高度关联性的少量相互作用光子态的操纵和识别。该成果于3月20日发表在《自然·物理学》杂志上。一个多世纪前,通过观察光与物质的相互作用,科学家们发现光不是一束粒子,也不是能量波,而是同时表现出这两种特性,被称为波粒二象性。由于其强大的实际应用,科学家们一直致力于研究光与物质相互作用的方式。另一方面,爱因斯坦于1916年提出受激辐射理论,为激光的发明奠定了基础,使人们对光的研究进入新的阶段。当今社会许许多多现代技术均依赖于对光的操控,尤其是通信方面,因为光子之间不易相互影响,这为近乎无失真的光速信息传输提供了可能。然而,人们有时还是希望光能够相互作用,比如光学干涉仪可用来测量距离的微小变化,这些测量工具现在很常见,无论是在先进的医学成像中,还是食品质量检验,或者引力波的探测,但量子力学定律在测量的灵敏度和测量设备中的平均光子数量之间设定了一系列限制。悉尼大学和巴塞尔大学的联合研究团队恰好利用了光学非线性过程实现了光子之间的相互作用。为此,他们选择了一个与光学谐振腔耦合的半导体量子点,即人造原子作为实验系统。关于

    前沿动态 2023年3月20日