郭光灿
-
中国科大实现硅基量子计算自旋量子比特的超快调控
中国科大郭光灿院士团队在硅基半导体量子计算研究中取得重要进展。该团队郭国平教授、李海欧教授等人与南科大量子科学与工程研究院黄培豪助理研究员、中科院物理研究所张建军研究员以及本源量子计算有限公司合作,在硅基锗量子点中实现了自旋量子比特操控速率的电场调控,以及自旋翻转速率超过1.2 GHz的自旋量子比特超快操控,该速率是国际上半导体量子点体系中已报道的最高值。该工作对提升自旋量子比特的品质具有重要的指导意义。研究成果以“Ultrafast and Electrically Tunable Rabi Frequency in a Germanium Hut Wire Hole Spin Qubit”为题,于4月26日在线发表在国际纳米器件物理知名期刊《Nano Letters》上。硅基半导体自旋量子比特以其长量子退相干时间和高操控保真度,以及其与现代半导体工艺技术兼容的高可扩展性,成为实现量子计算机研制的重要候选者之一。高操控保真度要求比特在拥有较长的量子退相干时间的同时具备更快的操控速率。传统方案利用电子自旋共振方式实现自旋比特翻转,这种方式的比特操控速率较慢。研究人员发现,利用电
-
中国科大实现超越海森堡极限精度的量子精密测量
中国科大郭光灿院士团队在量子精密测量的研究中取得重要进展。该团队李传锋、陈耕等人与香港大学同行合作,利用量子不确定因果序实现了超越海森堡极限精度的量子精密测量。研究成果于5月1日以“Experimental super-Heisenberg quantum metrology with indefinite gate order”为题发表在国际著名期刊《自然·物理》上。量子精密测量致力于把量子力学原理运用到各种测量任务中以实现超过经典极限的测量精度。海森堡极限被认为是利用量子方法和资源所能达到的最终极限。之前国际上曾有一些工作声称超越了海森堡极限,然而这些工作利用了非线性效应或者包含了含时的哈密顿量,引起了广泛讨论,最终被理论上证明在以能量等作为规范化资源定义的前提下仍然会遵循海森堡极限。图1:量子不确定因果序的示意图。蓝色和红色路线经过两个门的时序不同且处于量子叠加态。近年来,学术界提出一种新的量子结构,即量子不确定因果序。量子力学的叠加原理不仅允许不同量子本征态之间的叠加,也允许两个事件处于两个相反时序的量子叠加上(如图1所示)。这样一种新型的量子资源已经被证实可以
-
中国科大在超导量子计算非绝热几何量子计算领域取得重要进展
中国科大郭光灿团队在非绝热几何量子计算领域取得重要进展。该团队郭国平教授研究组与本源量子计算公司合作,在本源“夸父”6比特超导量子芯片上实现了演化路径缩短近两倍的非绝热几何量子计算,并展示了单比特几何相位门对拉比频率误差的绝对优势。该成果以研究长文的形式发表在4月25日出版的国际应用物理知名期刊《Physical Review Applied》上。超导量子比特是公认的最有希望实现量子计算的几个物理系统之一,目前正处于含噪声中等尺度量子计算阶段,超过50个比特的样品和基础的纠错算法已经被展示。但是控制和环境噪声限制了超导量子计算的进一步发展,如何实现对操控噪声不敏感的高保真度量子逻辑操控是实现大规模量子计算的关键。几何量子计算是利用几何相位来实现量子逻辑门操作的量子计算策略,其特点是利用几何位相的整体几何性质来避免某些局域无规噪声的影响,从而实现高保真度的量子逻辑门。因此,基于阿贝尔和非阿贝尔几何相位的几何与和乐量子操控是量子物理和量子信息领域中非常重要的研究课题。图1 (a)“夸父”6比特超导量子芯片电镜图,前两个相邻的比特被用于展示本文的实验。(b)传统动力学门方案(Dy
-
中国科大在多能级量子比特操控方案中取得重要进展
中国科大郭光灿院士团队在量子比特操控方案研究中取得重要进展。该团队郭国平教授、李海欧教授和龚明教授等人与纽约州立大学布法罗分校胡学东教授以及本源量子计算有限公司合作,对量子点系统中常见的多能级系统的量子调控展开研究,发现一种新的、实用的多能级调控方案。在该方案中,通过调控微波驱动频率、幅值等参数,可以实现任意能级结构,进而实现高速、抗噪声的量子比特操控。这种操控方案为实现高保真度量子比特操作提供了一种新途径。该研究成果发表在4月19日出版的国际应用物理知名期刊《Physical Review Applied》上。量子态的操控和演化在量子计算领域具有重要应用。所有的量子门操作,本质上都是这种操控的结果。这一原理被用广泛用于原子、超导比特、半导体量子点电荷和自旋比特等系统中,并在这些系统中实现了多种高保真度量子比特门。如果有效能级越简单,则操控越容易,精度越高。相反,当量子系统能级结构较为复杂时,对它们的调控就会非常复杂,而且可能出现各种串扰等。以半导体自旋量子比特系统为例,一个两比特系统的理论模型为五能级结构。使用微波驱动这样的五能级系统时,系统中不同的相干过程相互影响,使得整个
-
中国科大首次验证星型网络的量子非局域性
中国科大郭光灿院士团队在量子网络非局域性研究方面取得重要进展。该团队李传锋、黄运锋、张超等人与西班牙、瑞士等国的理论物理学家合作,首次实验验证了星形量子网络中的全网络非局域性。该成果4月14日发表在国际知名期刊《自然·通讯》上。贝尔非局域性一直是量子信息领域的研究热点。近年来,人们开始探索更复杂的包含多个独立源的量子网络中的非局域性。由于包含多个独立隐变量,量子网络中可以产生区别于传统贝尔非局域性的全新量子关联。其中Bilocal模型是最简单也是目前研究最多的量子网络,即两个独立纠缠源分配纠缠对到三个观测者,与纠缠交换的场景类似,中间节点接收到两个粒子并做贝尔基测量从而使整个网络产生非局域关联。然而,此前定义的网络非局域性无法刻画整个网络中所有源的非经典性,多数情况下可以退化为标准贝尔不等式的违背,且中间节点不需要采用纠缠测量。因此,物理学家们提出全网络非局域性(Full network nonlocality)的概念,它要求网络中所有源都分发非经典资源,能够用来认证网络中全连接的非经典性质。目前,全网络非局域性只在最简单的bilocal模型中进行了检验。在本工作中,研究组
-
中国科大首次实现基于碳化硅中硅空位色心的高压原位磁探测
中国科大郭光灿院士团队在碳化硅色心高压量子精密测量研究中取得重要进展。该团队李传锋、许金时、王俊峰等人与中科院合肥物质科学研究院固体所高压团队刘晓迪研究员等合作,在国际上首次实现了基于碳化硅中硅空位色心的高压原位磁探测,该技术在高压量子精密测量领域具有重要意义。3月23日研究成果以“Magnetic detection under high pressures using designed silicon vacancy centres in silicon carbide” 为题在线发表在国际知名期刊《自然·材料》上。高压技术已经广泛应用于物理学、材料科学、地球物理和化学等领域。特别是压力下高临界温度超导体的实现,引起了学术界的极大关注。然而一直以来,原位高分辨率的磁测量是高压科学研究的难题,并制约着高压超导抗磁行为和磁性相变行为的研究。传统的高压磁测量手段,如超导量子干涉仪难以实现金刚石对顶砧中微米级样品的弱磁信号的高分辨率原位探测。为了解决这一关键核心难题,金刚石NV色心的光探测磁共振技术已被用于原位压力诱导磁性相变检测。然而,由于NV色心具有四个轴向,并且其电子自旋的零
-
中国科大实现量子增强的微波测距
中国科大郭光灿院士团队在实用化量子传感研究中取得重要进展。孙方稳教授研究组利用微纳量子传感与电磁场在深亚波长的局域增强,研究微波信号的探测与无线电测距,实现10-4波长精度的定位。该成果于3月9日发表在国际知名期刊《自然·通讯》上。基于微波信号测量的雷达定位技术在自动驾驶、智能生产、健康检测、地质勘探等活动中得到广泛应用。尤其在当前智能化、信息化发展大趋势下,发展高性能雷达测距技术对国防安全和经济发展都方面有重要意义。量子信息技术的发展为发展雷达技术提供了新的解决方案。量子传感和精密测量利用量子相干、关联等特性提升系统对物理量的测量灵敏度,有望超越传统测量手段的精度。孙方稳研究组面向量子信息技术实用化,长期研究固态自旋体系的量子传感技术。发展了电荷态耗尽纳米成像方法,实现基于金刚石氮-空位色心的超衍射极限分辨力电磁场矢量传感与成像(Phys. Rev. Applied 12, 044039(2019)),并利用超分辨量子传感探索了电磁场在10-6波长空间内局域增强的现象(Nat. Commun. 12, 6389(2021))。在本研究中,研究组结合微纳米分辨力的固态体
-
中国科大观测到基于简并腔中涡旋光子的非厄米奇异点
中国科大郭光灿院士团队在基于简并腔中涡旋光子的拓扑量子模拟上取得新进展。该团队李传锋、许金时、韩永建等人利用简并光学谐振腔内的涡旋光子构建非厄米人工轨道角动量晶格,观测到了非厄米奇异点。该成果于1月25日发表在国际知名学术期刊《科学·进展》上。奇异点(exceptional point, EP)是非厄米系统的独特性质,它们存在于与周围环境有能量交换的开放系统中,是拓扑物理重要的研究对象。此前李传锋、许金时等人已利用光的轨道角动量构建一维的人工拓扑晶格,成功搭建了基于简并腔中涡旋光子的拓扑量子模拟平台[Nature Commun. 13, 2040 (2022)]。基于这一平台,在本成果中研究组巧妙地引入一个参数赝动量,并在人工轨道角动量与参数赝动量构成的二维动量空间中构建了狄拉克点。进一步通过在人工轨道角动量晶格上引入偏振非平衡损耗(图1A所示),使动量空间中的狄拉克点劈裂成一对奇异点。图1:实验原理与实验结果图。 (A)人工轨道角动量晶格示意图。圆圈代表轨道角动量,m为轨道角动量量子数,红色和蓝色分别代表左旋和右旋圆偏振光,直线箭头代表模式间相互作用,曲线箭头代表耗散。(
-
中国科大首次实现多体非线性量子干涉
中国科大郭光灿院士团队在多体非线性量子干涉研究中取得重要进展。该团队任希锋研究组与德国马克斯普朗克光科学研究所MarioKrenn教授合作,基于光量子集成芯片,国际首次展示了四光子非线性产生过程的干涉,相关成果于1月13日发表在光学权威学术期刊Optica上。量子干涉是众多量子应用的基础,特别是近年来基于路径不可区分性产生的非线性干涉过程越来越引起人们的关注。尽管双光子非线性干涉过程已经实现了二十多年,并且在许多新兴量子技术中得到了应用,直到2017年人们才在理论上将该现象扩展到多光子过程,但实验上由于需要极高的相位稳定性和路径重合性需求,一直未获得新的进展。光量子集成芯片,以其极高的相位稳定性和可重构性逐渐发展成为展示新型量子应用、开发新型量子器件的理想平台,也为多光子非线性干涉研究提供了实现的可能性。任希锋研究组长期致力于硅基光量子集成芯片开发及相关应用研究并取得系列重要进展:(1)国际上首次基于硅基光子集成芯片实现了四光子源的制备(Light Sci Appl 8, 41, 2019);(2)首次实现频率兼并四光子纠缠源制备(npj Quantum Inf 5, 90,
-
中国科大利用可重构微型光频梳实现kHz精度波长计
中国科大郭光灿院士团队在微腔光学频率梳的研究方面取得重要进展。该团队董春华教授及合作者邹长铃等人提出一种普适的微腔色散调控机制,实现了光频梳中心频率和重复频率的实时独立调控,并应用于光学波长的精密测量,将波长的测量精度提升到kHz量级。相关研究成果1月12日发表在Nature Communications上。近年来,基于光学微腔的孤子微梳在精密光谱学、光钟、微波光子学、天文学等领域引起了极大的研究兴趣。然而,由于环境和激光噪声以及微腔中额外非线性效应的影响,孤子微梳的稳定性受到了很大的限制,这成为微光梳在实际应用中的一个主要障碍。在之前的工作中,科学家们通过控制材料的折射率或者微腔的几何尺寸以实现实时反馈,从而稳定并调控光频梳,这种方法会引起微腔内所有共振模式同时近乎均匀的变化,缺乏独立调控梳齿频率和重复频率的能力,这大大限制了微光梳在精密光谱、微波光子、光学测距等实际场景中的应用。针对这一难题,研究团队提出了一种新的物理机制实现了对于光频梳中心频率和重复频率的独立实时调控。通过引入两种不同的微腔色散调控手段,该团队能够对微腔不同阶次的色散进行独立控制,从而实现光频梳不同梳