soujer
-
中性原子体系实现了创纪录的512量子比特
芝加哥大学Hannes Bernien团队实现了一种双元素原子阵列,可以单独控制单个铷原子和铯原子。研究人员使用512个光镊捕获铷原子和铯原子各256个,并观察到两个元素之间的串扰可以忽略不计。由此,中性原子体系实现了创纪录的512量子比特。论文于3月2日已经发表在《物理评论X》上[Phys. Rev. X 12, 011040 (2022)]。在量子计算领域,所有量子体系结构共同面临的一个核心挑战是在扩大系统规模的同时保持对单个量子比特的高保真控制和低串扰。目前,中性原子阵列已经成为一种很有前途的量子体系结构,可以突破目前对系统规模、相干性和高保真态制备和控制的限制。在中性原子系统中,单个中性原子被捕获在光镊阵列中,通过将它们激发到里德伯态来产生原子之间的相干相互作用。原子阵列实验已经达到了数百个原子的系统规模,包括哈佛大学Mikhail Lukin团队256个原子(量子比特)的可编程量子模拟器[Nature 595, 227 (2021)],证明了这种平台的潜力。然而,这些演示仅限于单个原子元素的阵列,其中原子的相同性质使得大量原子量子比特的无串扰控制和非破坏性读出具有挑战
-
中国科大在笼目晶格材料平带物性研究中取得新进展
近日,中国科大曾长淦教授研究组与吴涛教授研究组合作,在笼目晶格材料平带物性研究方面取得重要进展。研究团队在顺磁性笼目晶格材料CoSn中观测到了费米能级附近的平带电子结构并揭示了由平带电子导致的输运和磁性的反常各向异性。该研究成果以“Flat-Band-Induced Anomalous Anisotropic Charge Transport and Orbital Magnetism in Kagome Metal CoSn”为题于2月28日发表在《Physical Review Letters》杂志上。固体材料的电磁特性很大程度上取决于其电子能带结构。相对于常见的抛物线型色散关系的电子能带,处于两个极端的线性色散能带以及无色散平带是产生新物态及新效应的重要平台。如线性色散能带往往导致新奇的相对论效应和拓扑物性,而平带中电子动能淬灭,电子间库仑相互作用占据主导,是研究强关联效应的理想候选。笼目晶格是一类由顶点共享的三角格子组成的二维晶格结构,理论研究表明这样一个特殊晶格体系会同时存在电子有效质量为零的线性色散能带和有效质量无穷大的平带。曾长淦教授研究组在国际上较早开展了该体系
-
欧洲发布《欧洲量子计算和量子模拟基础设施》白皮书
2月2日,欧洲量子旗舰(Quantum Flagship)计划官网发布了《欧洲量子计算和量子模拟基础设施》白皮书,详细介绍了当前欧洲量子计算技术的发展状况与未来规划,并为如何实现高性能计算机(HPC)与量子计算的融合发展达成了共识。量子技术(QT)具有潜力对整个社会和经济产生颠覆性影响,可能实现新药物设计、新材料发现、绝对安全通信、金融策略与投资组合的优化等如今觉得困难乃至不可能的事情。因此,QT成为当今多个经济体争夺的科技制高点。欧盟委员会于2018年成立“量子旗舰计划”,宣布创建量子互联网,用来连接量子计算机、量子模拟器、传感器以及传输保密信息,以保护欧盟的数字基础设施。同年还建立了欧洲高性能计算联合体(EuroHPC JU),这是欧盟、欧洲国家和私人合作伙伴之间的一项联合倡议,旨在开发欧洲的世界级超级计算生态系统。EuroHPC JU使欧洲国家能够与欧盟一起协调其超级计算战略和投资,以进一步开发、部署、扩展和维护欧盟的世界级超级计算和数字基础设施。白皮书由欧洲高性能(HP)和量子计算社区联合推出,涵盖了欧洲各大超算中心以及对高性能计算有巨大需求的相关科研机构,包括:
-
世界首台非实验室条件下的量子重力梯度仪走出实验室
英国伯明翰大学研究人员23日在《自然》杂志上发表研究称,世界上第一台非实验室条件下的量子重力梯度仪问世。这种利用量子技术的传感器可找到隐藏在地下的物体,这是科学家们期待已久的里程碑,其对学界、业界和国家安全等将具有深远的影响。量子重力梯度仪的工作原理是利用超低温原子云测量原子云之间的干涉,从干涉信号中提取出与重力梯度有关的量。物体越大,其密度与周围环境的差异越大,测量到的重力的差异就越大。但振动、仪器倾斜以及磁场和热场的干扰,使得量子理论转化为商业现实具有挑战性。伯明翰量子传感器的突破性成功开启了一条商业之路,是第一个迎接这些现实世界挑战并进行高空间分辨率重力制图的项目。研究人员表示,这是传感领域的“觉醒时刻”,这一传感器可能有多种用途。城市工程师可利用它检测一些特殊用地的近地表(地下10米)特征,这些特征可能会影响新的建筑,因此可利用其降低铁路和公路项目的成本和延误;考古学家或可用于测绘墓穴和隐藏在地下的结构,在不破坏性挖掘的情况下了解考古奥秘;它还可用于测量地质特征,例如含水层或土壤密度,以确定含水量或发现隐藏的自然资源;还可改进对火山喷发等自然现象的预测。此前的重
-
光钟用于引力红移精确测量
曾经,相对论测试需要相隔数千公里的精确时钟来完成。如今,光钟技术的发展令这种测试在尺寸不超过一毫米的原子团中就可以完成。正如爱因斯坦在其广义相对论中所预测的那样,一个巨大质量物体的引力场会扭曲时空,这会导致时间在离物体越近时流逝越慢。这种现象被称为引力时间膨胀,而且这种效应是可以测量的——尤其是在像地球这样的巨大物体附近。测量需要足够精确的时钟,而如今最精确的计时器是原子钟,它通过检测原子中两个量子态之间的跃迁来计时。最近,美国JILA实验室的Bothwell等人和威斯康星大学麦迪逊分校的Zheng等人分别报道了他们使用超冷锶原子团在原子钟稳定性方面取得的惊人进展。Bothwell和其同事甚至成功地测量了单个原子团中重力导致的时间膨胀效应,即引力红移。1976年,NASA在其发射的重力探测(Gravity Probe A)卫星上,首次搭载了氢原子微波钟(作用与光钟类似),并执行了第一个敏感到足以测量引力红移的实验。重力探测卫星到达了地球表面上方10000公里的高度。在这个高度,以氢原子钟产生的高精度微波信号作为时钟,大约每73年将比地球上的等效时钟快一秒。重力探测卫星团
-
中国科大首次实现波导模式编码量子逻辑门
中国科大郭光灿院士团队在光量子芯片研究中取得重要进展。该团队任希锋研究组与浙江大学光电科学与工程学院/现代光学仪器国家重点实验室戴道锌团队合作,国际首次实现了片上波导模式编码的两比特量子逻辑门操作,相关成果于2月11日在国际知名学术期刊《物理评论快报》发表。经典和量子信息应用都需要大幅提高光子芯片的信息处理和通信能力,从而满足日益增长的光通信和互联的需求。为了实现大规模光量子系统,多光子、多自由度和高维编码是必然途径。多模波导模式具有独特性质,如高维扩展性、紧凑性以及与其它自由度的任意相干转换等,这使得波导模式编码在集成光子学领域中有着广泛的前景。因此,近年来波导模式编码备受关注。任希锋研究组与浙江大学戴道锌团队长期合作致力于硅基光量子器件及芯片研究并取得系列重要进展:(1)国际上首次将波导模式编码用于量子信息处理,实现了波导模式、偏振和路径编码纠缠态之间的相干转换(Nat Commun 7, 11985, 2016);(2)首次实现波导模式编码纠缠光源制备(npj Quantum Inf 5, 2, 2019);(3)基于密集波导超晶格阵列构建世界上最小尺寸的光学量子受控
-
我国科学家首次在超冷原子分子混合气中实现三原子分子的量子相干合成
中国科学技术大学潘建伟、赵博等与中国科学院化学所白春礼小组合作,在超冷原子双原子分子混合气中首次实现三原子分子的相干合成。在该研究中,他们在钾原子和钠钾基态分子的Feshbach共振附近利用射频场将原子和双原子分子相干地合成了超冷三原子分子,向基于超冷原子分子的量子模拟和超冷量子化学的研究迈出了重要一步。2月10日,这一重要研究成果发表在国际权威学术期刊《自然》杂志上。图:从超冷原子和双原子分子混合气中利用射频场合成三原子分子的示意图量子计算和量子模拟具有强大的并行计算和模拟能力,不仅能够解决经典计算机无法处理的计算难题,还能有效揭示复杂物理系统的规律,从而为新能源开发、新材料设计等提供指导。量子计算研究的终极目标是构建通用型量子计算机,但实现这一目标需要制备大规模的量子纠缠并进行容错计算,仍然需要长期不懈的努力。当前量子计算的短期目标是发展专用型量子计算机,即专用量子模拟机,它能够在某些特定的问题上解决现有经典计算机无法解决的问题。例如,超冷原子分子量子模拟,利用高度可控的超冷量子气体来模拟复杂的难于计算的物理系统,可以对复杂系统进行精确的全方位的研究,因而在化学反应和新型材
-
中国科学家首次观测到费米超流中的熵波临界发散
中国科学技术大学潘建伟、姚星灿、陈宇翱等与澳大利亚科学家胡辉合作,首次在处于强相互作用(幺正)极限下的费米超流体中观测到了熵波衰减的临界发散行为,揭示了该体系存在着一个可观的相变临界区,并获得了热导率与粘滞系数等重要的输运系数。该项工作为理解强相互作用费米体系的量子输运现象提供了重要的实验信息,是利用量子模拟解决重要物理问题的一个范例。2月4日,该成果以长文(research article)的形式发表在国际权威学术期刊Science上。80多年前,朗道建立了两流体理论,成功解释了氦-4液体(强相互作用玻色体系)的超流现象,并预言了熵或温度会以波的形式在超流中传播。熵波的性质与传统声波类似,它在传播过程中会逐渐衰减,因此朗道又将其命名为第二声(second sound)。第二声的传播和衰减与超流序参量直接耦合,是一种只存在于超流体中的独特量子输运现象。在费米超流中研究第二声的衰减行为,不仅能回答“两流体理论能否描述强相互作用费米超流的低能物理”这一长期存在的问题,还能表征强相互作用费米体系在超流相变处的临界输运现象。由强相互作用(幺正)极限下的超冷费米原子形成的超流体具有极
-
中国科大首次实验排除实数形式的标准量子力学
中国科学技术大学潘建伟、陆朝阳、朱晓波等和西班牙塞维利亚大学Cabello教授合作,利用超高精度超导量子线路实现确定性纠缠交换,以超过43个标准差的实验精度证明了实数无法完整描述标准量子力学,确立了复数的客观实在性。相关研究成果近日以“编辑推荐”的形式发表在《物理学评论快报》上。美国物理学会Physics网站和《自然》杂志分别邀请国际专家撰写了相关Viewpoint和News Views评论文章。物理学家使用数学来描述自然规律。在经典物理学中,人们只用实数就可以写出所有定律,而复数仅仅作为一个方便的计算工具被主观引入。随着量子力学诞生,复数逐渐表现出某种直觉上的不可排除性:理论上,作为量子力学基石的薛定谔方程和海森堡对易关系其本身就是依赖于复数写出的;实验上,人们直接测量到了波函数的实部与虚部。这说明复数可能不是一个主观引入的计算符号,而是可以实验检测的物理实在。图:实验结果量子物理是否确实必须使用复数,是一个长期的基础性问题。近期,奥地利、西班牙和瑞士等国家组成的科学家团队提出一种利用确定性纠缠交换验证复数必要性的贝尔不等式类型的检验方法。遵守实数形式量子物理的参与者不
-
中国科大在肿瘤组织微观磁成像技术方面取得重要进展
中国科学技术大学中科院微观磁共振重点实验室杜江峰、石发展等与生命科学与医学部魏海明教授等合作,在金刚石氮-空位色心量子精密测量技术的生物医学应用方面取得重要进展,首次建立了肿瘤组织免疫磁显微成像技术,实现了组织水平微米分辨率的磁成像,其具有高稳定性、低背景和肿瘤标志物绝对定量的优势,同时实现了磁和光的多模态成像。相关研究成果于2022年1月26日以“Immunomagnetic microscopy of tumor tissues using quantum sensors in diamond”为题发表在《美国国家科学院院刊》上[Proc Natl Acad Sci U S A 119(5),e2118876119(2022)]。癌症是目前导致人类死亡最多的疾病之一,对癌症分子机理的研究和临床早期精确诊断是有效治疗的基础。而对肿瘤在组织水平的成像是癌症研究和临床诊断的关键一环,尤其是在癌症的诊断中,虽然有各种医学影像方法,但病理组织检测仍然是癌症确诊的“金标准”。因此,对组织病理学方法的发展具有重要生物学和临床意义。现行主流的病理组织成像方法包括HE染色、免疫组化和免疫荧光