研究进展
-
中国科大单原子检测方法促进全球范围水冰定年研究
《美国物理学会新闻》近期发表了题为《一千年前的气候是什么样的?向氩-39要答案》的新闻报道,作者Tess Joosse是威斯康星州麦迪逊市的一名科学记者。文章介绍了中国科学技术大学团队关于氩-39原子阱痕量分析技术的最新进展。以下内容来自《美国物理学会新闻》:在青藏高原的冰川上和南极冰盖的底部,古老的冰层中保存着来自多年前地球大气的氪-81和氩-39等稀有气体同位素,它们包含了关于过去气候的微小线索。“这些同位素是环境中的天然时钟,”中国科学技术大学的研究生储艳清在今年6月份的美国物理学会(APS DAMOP)会议上说。 它们均匀分布在地球大气层中,其惰性使它们免受化学反应的影响。因此,如果我们能探测到这些被称为“示踪剂”的同位素,就可以知道很多关于它们从大气中循环出来时气候的情况。图 1 原子阱痕量分析装置原理图。样品气体从左侧进入真空装置,氩-39(氪-81)原子经过一系列激光的操纵后,在右侧磁光阱中被俘获,其荧光被灵敏的EMCCD相机探测(右上角小图)。然而检测它们并不容易。“想想一公斤冰,”中科大蒋蔚教授说,“其中只有大约2000个氪-81原子”,这对应着9
-
中国科大实现低频射频场的高灵敏里德堡原子传感器
中国科大郭光灿院士团队在基于里德堡原子的低频射频电场测量上取得重要进展。该团队史保森、丁冬生课题组利用非共振外差方法实现了基于里德堡原子的低频射频电场精密探测,相关成果以“Highly sensitive measurement of a MHz RF electric field with a Rydberg atom sensor”为题发表在国际应用物理期刊《Physical Review Applied》上。里德堡原子由于其较大的电偶极矩和极化率等独特性质,在微波测量领域展现出巨大应用潜力。基于里德堡原子的量子传感器在测量精度﹑抗干扰性以及可朔源等方面有望超越传统微波接收系统,因此该研究方向受到广泛关注,例如:美国陆军研究室、桑迪亚国家实验室等开展了相关研究,并取得了重要进展[Physical Review Applied 13, 054034 (2020),Physical Review Applied 15, 014047 (2021)]。尽管里德堡原子传感器在GHz高频微波频段探测取得了重要进展,但在MHz附近的低频波段却遇到困难,测量灵敏度较低,其主要原因在于低频
-
中国科大在高安全量子密钥分发网络方面取得新进展
中国科大郭光灿院士团队在量子密钥分发网络化研究方面取得重要进展。该团队韩正甫教授及其合作者王双、银振强、陈巍等实现了抗环境干扰的非可信节点量子密钥分发网络,全面提高了量子密钥分发网络的安全性、可用性和可靠性,向实现下一代量子网络迈出了重要的一步。相关研究成果于7月16日在线发表在国际学术知名期刊《Optica》上[Optica, 9, 812-823(2022)]。网络安全是信息时代的重要主题,量子密钥分发网络以量子物理原理为基础,可为成千上万的用户提供信息论安全的保密通信服务,构建安全可控的网络环境。当前,量子保密通信网络已在全球各地先后部署,在实践中证明了其优越的安全通信能力。但网络中对于可信节点的需求提高了其实际部署的门槛,如何免除用户链路上必须可信的中间节点,降低对通信链路的安全性要求,从而构建下一代基于非可信节点的量子网络,是目前急需解决的问题。测量设备无关量子密钥分发协议(MDI-QKD)通过设置一个非可信节点对编码量子态进行联合测量,可在两个用户间构建安全的通信链路,是构建百公里级城域量子网络的重要角色。然而联合测量不仅限定了参与用户的数量,还对信道环境的稳定
-
中国科大实现里德堡原子微波频率梳谱仪
中国科大郭光灿院士团队在基于里德堡原子的无线传感上取得新进展。该团队史保森、丁冬生课题组实现了一种基于里德堡原子的微波频率梳谱仪,在宽带微波的探测领域具有应用前景,相关成果7月14日以“Rydberg microwave frequency comb spectrometer”为题发表在美国物理协会(APS)旗下的应用物理期刊Physical Review Applied上。微波测量在通信、导航、雷达、以及天文探测领域发挥重要作用。里德堡原子具有较大的电偶极矩,它可以对微弱的电场具有很强的响应,因此可以用里德堡原子作为微波传感器。近年来,该研究方向受到广泛关注,例如:美国陆军研究室David H. Meyer等人展示了一个基于热里德堡原子与平面微波波导耦合的原子射频接收器和频谱分析仪[Physical Review Applied 15, 014047 (2021)]。尽管里德堡原子传感研究取得了重要进展,但仍然存在一些亟待解决的问题,比如可实时接收信号的带宽(瞬时带宽)受限于原子系统到达稳态的弛豫时间,通常只有几MHz,严重影响了该体系的实用化进程。在本工作中,研究团队基
-
中国科大超冷原子量子模拟获重要进展:格点规范场理论热化问题得解
中国科学技术大学潘建伟、苑震生等与德国海德堡大学、奥地利因斯布鲁克大学、意大利特伦托大学的相关研究人员合作在超冷原子量子模拟研究中取得重要进展:他们使用超冷原子量子模拟器,对格点规范场理论中非平衡态过渡到平衡态的热化动力学进行了模拟,首次在实验上证实了规范对称性约束下量子多体热化导致的初态信息“丢失”,取得了利用量子模拟方法求解复杂物理问题的重要进展。北京时间07月15日,国际著名学术期刊《科学》杂志发表了该研究成果。规范场理论是现代物理学的基础,如描述基本粒子相互作用的量子电动力学、标准模型等都是满足特定群对称性的规范场理论。随着半个多世纪的发展,它在粒子物理学、宇宙学以及凝聚态物理学等领域获得了广泛应用。由于其求解复杂度高,规范场理论体系中仍然有很多开放问题。其中,规范场理论描述的物理系统是否可以从远离平衡态经过演化达到热平衡就是一个备受关注并极具挑战的问题。这一问题的解决,有助于人们理解高能物理中重核碰撞的问题,也将为现代宇宙学中大爆炸早期物质的形成提供物理解释。但是,使用经典计算机求解复杂的规范场理论是一个公认的难题,量子模拟器为解决这一问题提供了新的路径。近年来,
-
中国科大实验检验量子网络的非局域性
中国科大郭光灿院士团队在非局域量子网络研究中取得重要进展,该团队李传锋、柳必恒研究组与奥地利Armin Tavakoli博士等人合作,使用超纠缠实现基于对称联合测量(symmetric joint measurements)的纠缠交换,并研究双局域贝尔不等式(Bilocal Bell inequality)和全量子网络非局域性(Full network nonlocality)。该成果7月13日发表在国际知名期刊《物理评论快报》上。贝尔非局域是量子力学和量子信息科学的重要基础。近十多年来,对非局部性的研究不再局限于两体问题,而是转向更复杂的结构。这类实验涉及多个独立的纠缠源,实验中将这些纠缠源进行多方分发和纠缠测量并最终形成非局域量子网络。由于量子网络所展示的非局域性突破了传统贝尔实验的框架,因此在物理理论和实验上都存在巨大的挑战。目前实验上连接独立纠缠源的纠缠测量主要是利用标准的贝尔态测量,对于更一般的纠缠测量及其所建立的非局域量子网络的性质研究还很缺乏。对称联合测量是一类重要的纠缠测量,与贝尔态测量有着本质的不同。它具有优雅而自然的对称性,可以作为一种量子信息资源进行利
-
中国科大在《现代物理评论》上发表空间量子实验综述论文
近期,中国科学技术大学潘建伟及其同事彭承志、陆朝阳、曹原应邀在国际物理学权威综述期刊《现代物理评论》(Review of Modern Physics)上发表题为“基于‘墨子号’卫星的空间量子实验”(Micius quantum experiments in space)的长篇综述论文。该论文从量子信息理论的基本概念、早期量子通信和量子信息相关原理性实验、面向卫星的地面大空间尺度验证实验,以及“墨子号”卫星从立项、研制、在轨运行到最终在国际上率先完成一系列星地量子科学实验,进行了系统性的阐述和总结。同时,该综述论文还对国际空间量子科学的研究进展进行了梳理。“墨子号”的成功激励了国际空间量子科学的研究热潮,美国、欧盟、日本等国际上的各方力量随后皆开始探索自己的广域量子通信之路,提出或加速了一系列空间量子科学布局。论文的最后,对于进一步构建覆盖全球的量子通信网络和基于空间平台的量子物理基础研究进行了前瞻性的展望,表明“墨子号”系列实验开启了利用空间平台开展量子信息和量子物理前沿研究的广阔天地。图1 《现代物理评论》论文网页量子通信基于量子物理学的基本原理,克服了经典加密技术内在的安
-
中国科大实现新型自旋量子放大技术
中国科学技术大学中国科学院微观磁共振重点实验室彭新华研究组在自旋量子精密测量领域取得重要进展,首次提出和验证了Floquet自旋量子放大技术,该技术克服了以往只在单个频率处量子放大的局限性,实现了多频段极弱磁场信号的量子放大,灵敏度达到了飞特斯拉水平。相关研究成果于6月9日以“Floquet Spin Amplification”为题在线发表于著名国际学术期刊《Physical Review Letters》上[Phys. Rev. Lett. 128, 233201 (2022)],并被选为“编辑推荐(Editors’Suggestion)”文章。现代自然科学和物质文明是伴随着测量精度的不断提升而发展的。随着量子力学基础研究和科学技术的发展,通过原子、分子、自旋等物理系统可以实现微弱信号的量子增强放大。相比于基于经典电路的传统放大技术,量子增强放大受限于更低的量子噪声且具有更高的放大增益,为提升测量精度提供了强有力的研究手段,因此受到大家的广泛关注和研究。目前,量子放大技术已经在诸多测量过程发挥不可替代的作用,催生出许多革命性成果,例如微波激射器、激光器、原子钟,甚至宇宙微波
-
供体−受体分子间量子相干能量转移的直接观察
分子间的能量转移过程是生命活动与光电转换中的基本过程,是分子光谱学与光化学等领域的研究重点。其中,一个重要的科学问题是如何理解光合作用中的高效能量转移机制,以及其中是否存在高效的波状量子相干传能过程。早在20世纪30年代,理论分析就指出,当供体−受体分子间距离非常小时,分子间的偶极耦合强度就可以大于各自耗散,使得激发能量可以离域在整个供受体分子系统上,这样一来,能量就能以波状量子相干传能的方式在供体和受体分子之间振荡。然而,在实验上,关于量子相干传能过程存在的直接证据一直缺乏。其原因在于:一方面,常用的捕光天线蛋白等生物分子的结构复杂,难以精确地控制分子局域结构与微观环境;另一方面,常规远场稳态和超快光谱技术受到衍射极限的制约,难以对单个分子进行个体化研究,所测量结果受到系综平均效应的影响,反映的是多种过程与机制的平均结果,难以给出微观机理等的直观认识。中国科大单分子科学团队利用自主发展的具有亚纳米空间分辨的电致荧光成像技术,以铂酞菁(能量供体)和锌酞菁分子(能量受体)为模型体系,通过STM操纵可控地改变供体−受体分子的间距与取向等结构特征,同时监控受体分子发光强度随着分子间距
-
中国科大实现基于粒子不可分辨性的量子相干生成和应用
中国科大郭光灿院士团队在量子物理基础研究中取得重要进展。该团队李传锋、许金时、孙凯等人与意大利巴勒莫大学Rosario Lo Franco教授等国际合作者通过调控光子的空间不可分辨性,实现了量子相干性的生成,并展示了其在量子计量任务中的实际应用。该成果于5月20日发表在国际知名杂志《美国国家科学院院刊》上。量子相干性是量子力学中最基础的本质特性,它使得量子系统中会出现“薛定谔猫”等在经典视角下难以理解的现象。对于单粒子量子系统,量子相干性体现在系统处于计算基矢的叠加状态;而对于多粒子量子系统,如果这些粒子是全同粒子,则即使没有任何一个粒子处于相干叠加状态,整个量子系统也可以存在相干性。这种相干性是由于全同粒子之间波函数的空间不可分辨性所导致的。然而,针对基于粒子不可分辨性的量子相干资源,其实验研究面临两个问题:一是需要调控全同粒子之间的不可分辨性来生成具有不同相干度的量子资源,二是需要展示这种相干性在具体量子信息任务中的实际应用,从而证明它是物理上可用的量子资源,而不仅仅是描述全同粒子的特定数学形式的结果。图1. 全同粒子系统的量子相干性及其在相位通道鉴别任务中的应用实验原理示