首次实现微波光子和光学光子的纠缠
-
首次实现微波光子和光学光子的纠缠
奥地利科学和技术研究所的研究团队设计及制作了一种光电装置,并演示了在不同能量尺度的光子间建立纠缠。这个新的突破可以在能量尺度相差五个数量级以上的物理平台之间架起桥梁,并保持脆弱的纠缠,这将为有效连接混合量子系统提供途径。该成果于5月18日发表在《科学》杂志上。量子计算机有望解决材料科学和密码破译带来的算力挑战,但由于需要纠错,将可能需要数百万个高质量的量子比特。超导处理器的进展很快,目前的量子比特数量最高可达几百个。虽然超导量子技术具有计算速度快、与微纳芯片制造兼容等优点,但对超低温的需求最终限制了其尺寸,并且一旦冷却下来就无法对其进行任何物理访问。具有多个可单独冷却的处理器节点的模块化量子计算机可以解决这个问题。然而,单个微波光子并不适合在处理器之间通过室温环境传输,这是由于室温环境充满了噪声热量,很容易扰乱微波光子及其脆弱的量子特性,如纠缠。奥地利科学技术研究所与维也纳理工大学和慕尼黑工业大学的研究人员合作,展示了克服这些挑战的重要技术进展。首先需要解决的是热噪声问题。当量子比特和相关控制线路越多时,产生的热量就越多,使用制冷机保持量子计算机的冷却就越难。该团队采用多个